3.514 \(\int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=146 \[ \frac {16 a^3 (6 A-5 i B) \sqrt {\cot (c+d x)}}{15 d}-\frac {2 (5 B+9 i A) \sqrt {\cot (c+d x)} \left (a^3 \cot (c+d x)+i a^3\right )}{15 d}+\frac {8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \sqrt {\cot (c+d x)} (a \cot (c+d x)+i a)^2}{5 d} \]

[Out]

8*(-1)^(1/4)*a^3*(A-I*B)*arctanh((-1)^(3/4)*cot(d*x+c)^(1/2))/d+16/15*a^3*(6*A-5*I*B)*cot(d*x+c)^(1/2)/d-2/5*a
*A*(I*a+a*cot(d*x+c))^2*cot(d*x+c)^(1/2)/d-2/15*(9*I*A+5*B)*(I*a^3+a^3*cot(d*x+c))*cot(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.49, antiderivative size = 146, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3581, 3594, 3592, 3533, 208} \[ \frac {16 a^3 (6 A-5 i B) \sqrt {\cot (c+d x)}}{15 d}-\frac {2 (5 B+9 i A) \sqrt {\cot (c+d x)} \left (a^3 \cot (c+d x)+i a^3\right )}{15 d}+\frac {8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}-\frac {2 a A \sqrt {\cot (c+d x)} (a \cot (c+d x)+i a)^2}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

(8*(-1)^(1/4)*a^3*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (16*a^3*(6*A - (5*I)*B)*Sqrt[Cot[c + d
*x]])/(15*d) - (2*a*A*Sqrt[Cot[c + d*x]]*(I*a + a*Cot[c + d*x])^2)/(5*d) - (2*((9*I)*A + 5*B)*Sqrt[Cot[c + d*x
]]*(I*a^3 + a^3*Cot[c + d*x]))/(15*d)

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \cot ^{\frac {7}{2}}(c+d x) (a+i a \tan (c+d x))^3 (A+B \tan (c+d x)) \, dx &=\int \frac {(i a+a \cot (c+d x))^3 (B+A \cot (c+d x))}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 a A \sqrt {\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac {2}{5} \int \frac {(i a+a \cot (c+d x))^2 \left (\frac {1}{2} a (A-5 i B)-\frac {1}{2} a (9 i A+5 B) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}} \, dx\\ &=-\frac {2 a A \sqrt {\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac {2 (9 i A+5 B) \sqrt {\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac {4}{15} \int \frac {(i a+a \cot (c+d x)) \left (-a^2 (3 i A+5 B)-2 a^2 (6 A-5 i B) \cot (c+d x)\right )}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {16 a^3 (6 A-5 i B) \sqrt {\cot (c+d x)}}{15 d}-\frac {2 a A \sqrt {\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac {2 (9 i A+5 B) \sqrt {\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac {4}{15} \int \frac {15 a^3 (A-i B)-15 a^3 (i A+B) \cot (c+d x)}{\sqrt {\cot (c+d x)}} \, dx\\ &=\frac {16 a^3 (6 A-5 i B) \sqrt {\cot (c+d x)}}{15 d}-\frac {2 a A \sqrt {\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac {2 (9 i A+5 B) \sqrt {\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}+\frac {\left (120 a^6 (A-i B)^2\right ) \operatorname {Subst}\left (\int \frac {1}{-15 a^3 (A-i B)-15 a^3 (i A+B) x^2} \, dx,x,\sqrt {\cot (c+d x)}\right )}{d}\\ &=\frac {8 \sqrt [4]{-1} a^3 (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\cot (c+d x)}\right )}{d}+\frac {16 a^3 (6 A-5 i B) \sqrt {\cot (c+d x)}}{15 d}-\frac {2 a A \sqrt {\cot (c+d x)} (i a+a \cot (c+d x))^2}{5 d}-\frac {2 (9 i A+5 B) \sqrt {\cot (c+d x)} \left (i a^3+a^3 \cot (c+d x)\right )}{15 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 7.87, size = 132, normalized size = 0.90 \[ -\frac {a^3 \sqrt {\cot (c+d x)} \left (120 (A-i B) \sqrt {i \tan (c+d x)} \tanh ^{-1}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+\csc ^2(c+d x) (5 (B+3 i A) \sin (2 (c+d x))+9 (7 A-5 i B) \cos (2 (c+d x))-57 A+45 i B)\right )}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])^3*(A + B*Tan[c + d*x]),x]

[Out]

-1/15*(a^3*Sqrt[Cot[c + d*x]]*(Csc[c + d*x]^2*(-57*A + (45*I)*B + 9*(7*A - (5*I)*B)*Cos[2*(c + d*x)] + 5*((3*I
)*A + B)*Sin[2*(c + d*x)]) + 120*(A - I*B)*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]]
*Sqrt[I*Tan[c + d*x]]))/d

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 447, normalized size = 3.06 \[ -\frac {15 \, \sqrt {\frac {{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac {{\left (8 \, {\left (A - i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {\frac {{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}} {\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (4 i \, A + 4 \, B\right )} a^{3}}\right ) - 15 \, \sqrt {\frac {{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}} {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (-\frac {{\left (8 \, {\left (A - i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt {\frac {{\left (64 i \, A^{2} + 128 \, A B - 64 i \, B^{2}\right )} a^{6}}{d^{2}}} {\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (4 i \, A + 4 \, B\right )} a^{3}}\right ) - 16 \, {\left ({\left (39 \, A - 25 i \, B\right )} a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} - 3 \, {\left (19 \, A - 15 i \, B\right )} a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 4 \, {\left (6 \, A - 5 i \, B\right )} a^{3}\right )} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{60 \, {\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/60*(15*sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*
log(-(8*(A - I*B)*a^3*e^(2*I*d*x + 2*I*c) - sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(I*d*e^(2*I*d*x + 2*
I*c) - I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*a
^3)) - 15*sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*
log(-(8*(A - I*B)*a^3*e^(2*I*d*x + 2*I*c) - sqrt((64*I*A^2 + 128*A*B - 64*I*B^2)*a^6/d^2)*(-I*d*e^(2*I*d*x + 2
*I*c) + I*d)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*
a^3)) - 16*((39*A - 25*I*B)*a^3*e^(4*I*d*x + 4*I*c) - 3*(19*A - 15*I*B)*a^3*e^(2*I*d*x + 2*I*c) + 4*(6*A - 5*I
*B)*a^3)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x
+ 2*I*c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} \cot \left (d x + c\right )^{\frac {7}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^3*cot(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [C]  time = 2.20, size = 2947, normalized size = 20.18 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x)

[Out]

1/15*a^3/d*(-60*I*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d
*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c
))^(1/2)-63*A*2^(1/2)*cos(d*x+c)^3+60*A*2^(1/2)*cos(d*x+c)+60*I*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(
d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c)
)/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c)^3*EllipticPi((-(-sin(d*x+c)-1+cos(d*x
+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+s
in(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)^3*(-(-sin(d*x+c)-1+cos(d*x+c
))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*Elliptic
F((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-60*I*B*cos(d*x+c)^3*EllipticPi((-(-sin(d*x+c)-1+
cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d
*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c)^2*EllipticPi((-(-sin(
d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*(
(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)^2*(-(-sin(d*
x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-60*I*B*cos(d*x+c)^2*EllipticPi((
-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^
(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-60*I*A*cos(d*x+c)*Ellip
ticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d
*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+60*I*A*cos(d*x+c
)*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)
)/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))+60*I*B*cos(d*x+c)*El
lipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/si
n(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-60*A*Elliptic
Pi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+
c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-60*B*EllipticPi((-(
-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1
/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+60*B*(-(-sin(d*x+c)-1+cos
(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*El
lipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))-5*B*2^(1/2)*cos(d*x+c)^2*sin(d*x+c)+60*A*E
llipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*x+c))/s
in(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d*x+c)^3
+60*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos(d*
x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*cos(d
*x+c)^3-60*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1
+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*cos(d*x+c
)^3+60*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c)-1+cos
(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*co
s(d*x+c)^2+60*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*x+c
)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(
1/2)*cos(d*x+c)^2-60*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^
(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))
*cos(d*x+c)^2-60*A*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-sin(d*
x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c)
)^(1/2)*cos(d*x+c)-60*B*EllipticPi((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-(-s
in(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c))/sin(d
*x+c))^(1/2)*cos(d*x+c)+60*B*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*
x+c))^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^
(1/2))*cos(d*x+c)+60*I*A*(-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2)*((-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c)
)^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*EllipticF((-(-sin(d*x+c)-1+cos(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2
))-45*I*B*cos(d*x+c)*2^(1/2)+45*I*B*cos(d*x+c)^3*2^(1/2)-15*I*A*cos(d*x+c)^2*sin(d*x+c)*2^(1/2))*(cos(d*x+c)/s
in(d*x+c))^(7/2)*sin(d*x+c)/cos(d*x+c)^4*2^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.11, size = 198, normalized size = 1.36 \[ -\frac {15 \, {\left (\sqrt {2} {\left (-\left (2 i - 2\right ) \, A - \left (2 i + 2\right ) \, B\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (-\left (2 i - 2\right ) \, A - \left (2 i + 2\right ) \, B\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )\right )} a^{3} - \frac {30 \, {\left (4 \, A - 3 i \, B\right )} a^{3}}{\sqrt {\tan \left (d x + c\right )}} + \frac {2 \, {\left (15 i \, A + 5 \, B\right )} a^{3}}{\tan \left (d x + c\right )^{\frac {3}{2}}} + \frac {6 \, A a^{3}}{\tan \left (d x + c\right )^{\frac {5}{2}}}}{15 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))^3*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/15*(15*(sqrt(2)*(-(2*I - 2)*A - (2*I + 2)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + sqrt(2)
*(-(2*I - 2)*A - (2*I + 2)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I
 - 1)*B)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)/
sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))*a^3 - 30*(4*A - 3*I*B)*a^3/sqrt(tan(d*x + c)) + 2*(15*I*A + 5*B)*a^3
/tan(d*x + c)^(3/2) + 6*A*a^3/tan(d*x + c)^(5/2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^{7/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3 \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(7/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^3,x)

[Out]

int(cot(c + d*x)^(7/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^3, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+I*a*tan(d*x+c))**3*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________